Copied to
clipboard

G = C42:25D6order 192 = 26·3

23rd semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:25D6, C6.1372+ 1+4, C4:C4:33D6, (C4xD12):13C2, (C4xC12):7C22, D6:C4:7C22, Dic3:D4:44C2, D6:D4:27C2, C12:D4:36C2, C42:7S3:8C2, C42:2C2:2S3, D6:Q8:40C2, C22:C4.40D6, Dic3:5D4:39C2, D6.12(C4oD4), C23.9D6:48C2, D6.D4:38C2, C2.62(D4oD12), (C2xD12):29C22, (C2xC6).248C24, C4:Dic3:61C22, (C2xC12).193C23, Dic3:C4:27C22, C3:9(C22.32C24), (C4xDic3):38C22, (C2xDic6):11C22, (C22xC6).62C23, C23.64(C22xS3), C23.11D6:44C2, (S3xC23).68C22, C22.269(S3xC23), (C22xS3).111C23, (C2xDic3).264C23, C6.D4.64C22, (S3xC2xC4):27C22, C4:C4:S3:41C2, C2.95(S3xC4oD4), (S3xC22:C4):20C2, (C3xC4:C4):32C22, C6.206(C2xC4oD4), (C3xC42:2C2):3C2, (C2xC4).85(C22xS3), (C2xC3:D4).68C22, (C3xC22:C4).73C22, SmallGroup(192,1263)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42:25D6
C1C3C6C2xC6C22xS3S3xC23S3xC22:C4 — C42:25D6
C3C2xC6 — C42:25D6
C1C22C42:2C2

Generators and relations for C42:25D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=b-1, dcd=c-1 >

Subgroups: 784 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C22xS3, C22xS3, C22xC6, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C4.4D4, C42:2C2, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, C2xC3:D4, S3xC23, C22.32C24, C4xD12, C42:7S3, S3xC22:C4, D6:D4, C23.9D6, Dic3:D4, C23.11D6, Dic3:5D4, D6.D4, C12:D4, D6:Q8, C4:C4:S3, C3xC42:2C2, C42:25D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, S3xC23, C22.32C24, S3xC4oD4, D4oD12, C42:25D6

Smallest permutation representation of C42:25D6
On 48 points
Generators in S48
(1 31 4 28)(2 35 5 26)(3 33 6 30)(7 34 10 25)(8 32 11 29)(9 36 12 27)(13 41 16 43)(14 47 17 39)(15 37 18 45)(19 46 22 38)(20 42 23 44)(21 48 24 40)
(1 22 10 13)(2 20 11 17)(3 24 12 15)(4 19 7 16)(5 23 8 14)(6 21 9 18)(25 41 31 38)(26 44 32 47)(27 37 33 40)(28 46 34 43)(29 39 35 42)(30 48 36 45)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 21)(14 20)(15 19)(16 24)(17 23)(18 22)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 41)(38 40)(43 45)(46 48)

G:=sub<Sym(48)| (1,31,4,28)(2,35,5,26)(3,33,6,30)(7,34,10,25)(8,32,11,29)(9,36,12,27)(13,41,16,43)(14,47,17,39)(15,37,18,45)(19,46,22,38)(20,42,23,44)(21,48,24,40), (1,22,10,13)(2,20,11,17)(3,24,12,15)(4,19,7,16)(5,23,8,14)(6,21,9,18)(25,41,31,38)(26,44,32,47)(27,37,33,40)(28,46,34,43)(29,39,35,42)(30,48,36,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48)>;

G:=Group( (1,31,4,28)(2,35,5,26)(3,33,6,30)(7,34,10,25)(8,32,11,29)(9,36,12,27)(13,41,16,43)(14,47,17,39)(15,37,18,45)(19,46,22,38)(20,42,23,44)(21,48,24,40), (1,22,10,13)(2,20,11,17)(3,24,12,15)(4,19,7,16)(5,23,8,14)(6,21,9,18)(25,41,31,38)(26,44,32,47)(27,37,33,40)(28,46,34,43)(29,39,35,42)(30,48,36,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,41)(38,40)(43,45)(46,48) );

G=PermutationGroup([[(1,31,4,28),(2,35,5,26),(3,33,6,30),(7,34,10,25),(8,32,11,29),(9,36,12,27),(13,41,16,43),(14,47,17,39),(15,37,18,45),(19,46,22,38),(20,42,23,44),(21,48,24,40)], [(1,22,10,13),(2,20,11,17),(3,24,12,15),(4,19,7,16),(5,23,8,14),(6,21,9,18),(25,41,31,38),(26,44,32,47),(27,37,33,40),(28,46,34,43),(29,39,35,42),(30,48,36,45)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,21),(14,20),(15,19),(16,24),(17,23),(18,22),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,41),(38,40),(43,45),(46,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C···4G4H4I4J4K4L6A6B6C6D12A···12F12G12H12I
order12222222223444···444444666612···12121212
size11114661212122224···46612121222284···4888

36 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4oD42+ 1+4S3xC4oD4D4oD12
kernelC42:25D6C4xD12C42:7S3S3xC22:C4D6:D4C23.9D6Dic3:D4C23.11D6Dic3:5D4D6.D4C12:D4D6:Q8C4:C4:S3C3xC42:2C2C42:2C2C42C22:C4C4:C4D6C6C2C2
# reps1111211111211111334224

Matrix representation of C42:25D6 in GL6(F13)

800000
080000
0012071
00012126
0010710
006301
,
930000
340000
0036110
00710011
00120107
0001263
,
100000
7120000
001100
0012000
001031212
0010710
,
100000
7120000
00121200
000100
001031212
006301

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,10,6,0,0,0,12,7,3,0,0,7,12,1,0,0,0,1,6,0,1],[9,3,0,0,0,0,3,4,0,0,0,0,0,0,3,7,12,0,0,0,6,10,0,12,0,0,11,0,10,6,0,0,0,11,7,3],[1,7,0,0,0,0,0,12,0,0,0,0,0,0,1,12,10,10,0,0,1,0,3,7,0,0,0,0,12,1,0,0,0,0,12,0],[1,7,0,0,0,0,0,12,0,0,0,0,0,0,12,0,10,6,0,0,12,1,3,3,0,0,0,0,12,0,0,0,0,0,12,1] >;

C42:25D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{25}D_6
% in TeX

G:=Group("C4^2:25D6");
// GroupNames label

G:=SmallGroup(192,1263);
// by ID

G=gap.SmallGroup(192,1263);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,675,570,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<